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Supervised learning

Given a set of I.I.D. training samples 

Learn a prediction function

b r a c e



Supervised learning (cont’d)

Many different choices

– Support Vector Machines (SVM)

• Max-margin learning

– Logistic Regression

• Maximum likelihood estimation



Real problems usually come with structures

OCR – sequence

Image annotation – regular/irregular 2D layout 

Much richer structures are not uncommon…

b r a c e

Input Structures

Output Structure



Structured learning

A suit of learning methods and theory to consider structured 
inputs and/or structured outputs and or structured model s

Learning with structured outputs come with various names

 Structured output learning

 Structured prediction

 Collective prediction/classification

 Relational learning

 …

We don’t discuss model structures

 Sparsity, structured sparsity, hierarchical models, etc. 



Structured inputs

Naïve Bayes (generative models)
 Strict conditional independence assumption on inputs

Tree-augmented NB (generative models)
 Introduce sparse edges between input variables 

Logistic regression (conditional/discriminative 
models)
 Allow arbitrary structures in inputs

Discriminative SVM deals with rich input structures using kernels



Structured outputs

We consider sequential labeling 

 Application in computational linguistics & computer science
 Text and speech processing, including topic segmentation, part-of-speech (POS) tagging

 Information extraction

 Syntactic disambiguation

 Application in computational biology
 DNA and protein sequence alignment

 Sequence homolog searching in databases

 Protein secondary structure prediction

 RNA secondary structure analysis

… but the ideas generalize to richer structures (difficulty lies 

in inference)



Generative models

Hidden Markov models (HMMs)
 Assign a joint probability to paired observation and label sequences

 The parameters typically trained to maximize the joint likelihood of train 

examples

 Inference is done with forward-backward message passing



Generative models (cont’d)

Difficulties and disadvantages
 Need to enumerate all possible observation sequences

 Not practical to represent multiple interacting features or long-range 

dependencies of the observations

 Very strict independence assumptions on the observations



Conditional models

Conditional probability P(label sequence y | observation sequence x)

rather than joint probability P(y, x)

 Specify the probability of possible label sequences given an observation 

sequence

Allow arbitrary, non-independent features on the observation sequence 

X

The probability of a transition between labels may depend on past and

future observations

 Relax strong independence assumptions in generative models



Maximum entropy Markov models 

(MEMMs)
Given training set X with label sequence Y:
 Train a model θ that maximizes p(Y|X, θ)
 For a new data sequence x, the predicted label y maximizes p(y|x, θ)

 Note: per-state/local normalization



MEMMs (cont’d)

MEMMs have all the advantages of conditional models

But, it’s subject to “label bias problem”

 Bias toward states with fewer outgoing transitions

 Due to per-state normalization: 

 all the mass that arrives at a state must be distributed among the possible successor 

states (“conservation of score mass”)



Label bias problem

The probability doesn’t depend on the second observation

 If one path is slightly more often in training, it always wins in testing!

Does HMM has the label bias problem? 

(per-state normalization)



Solve the label bias problem

Change the state-transition structure of the model

 Not always practical to change the set of states

Start with a fully-connected model and let the training 
procedure figure out a good structure
 Prelude the use of prior, which is very valuable (e.g. in information 

extraction)



Conditional Random Fields (CRFs)

CRFs have all the advantages of MEMMs without 

label bias problem
 MEMM uses per-state exponential model for the conditional probabilities of 

next states given the current state

 CRF has a single exponential model for the joint probability of the entire 

sequence of labels given the observation sequence

Undirected graphs

Allow some transitions “vote” more strongly than others 

depending on the corresponding observations



Definition of CRFs

A random field model conditioned on inputs

Examples:



Conditional distribution

If the graph G = (V, E) of Y is a chain, the conditional 
distribution over the label sequence y, given x is:

 fk and gk are given and fixed. gk is a Boolean vertex feature; fk is a 
Boolean edge feature

 k is the number of features

 are parameters to be 
estimated

 y|e is the set of components of y defined by edge e

 y|v is the set of components of y defined by vertex v

 Z(x) is a normalization over the data sequence x
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Parameter estimation for CRFs

Lafferty et al., presented iterative scaling algorithms

But it’s very inefficient

More efficient learning algorithms

 LBFGS with approximate Hessian

 depending on graph structures, log Z(x) and its derivative can be hard

 Other optimization algorithms apply

Note: standard MCLE over-fits, 2-norm regularization saves!
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Discriminative Learning

from unstructured to structured …

– Support Vector Machines (SVM)

• max-margin learning

– Logistic Regression

• maximum likelihood estimation

– Conditional Random Fields: CRFs

• maximum likelihood estimation

– Max-margin Markov Networks: M3Ns

• max-margin learning



Max-margin Markov Networks

Generalize the ideas of max-margin classifiers to structured 

output learning

Like CRFs, it has a Markov graph structure

But it doesn’t define a normalized conditional distribution

Instead, it directly learns a prediction model by doing opt. 



Learning M3Ns

Many algorithms

 Sequential minimal optimization (SMO)

 Stochastic sub-gradient descent

 Cutting-plane methods

 Bundle methods 

 …

Compare with SVM, the difficulty is on inference!



CRFs versus M3N

Commons

 have a Markov network to encode output structures

 discriminative models dealing with arbitrary inputs

 the kernel trick applies

 can use various regularizors in learning 

Differences

 Log-loss versus structured hinge loss

 Probabilistic versus non-probabilistic (normalization matters!)



Empirical comparison

Synthetic datasets with 30 relevant features + 70 irrelevant 

features

[Zhu et al., Maximum Entropy Discriminant Markov Networks, JMLR 2009]



Other developments

Direct task-dependent loss minimization

Problem:
 task loss is typically non-convex, no polynomial algorithms with 

performance guarantees
 Convex surrogate (struct-SVM) is inconsistent
 CRF maximizes likelihood, not related to task loss.

A perceptron-like learning rule is constructed, whose expected 
update direction approaches the gradient of task loss
 Related to stochastic sub-gradient descent of struct-SVM. 



Other developments (cont’d)

Markov logic networks

 Use logic formula as dependence templates to construct a Markov 
network

 Each formula is “softened” by associating with a weight

 Generative or discriminative training

Learning with structured latent variables

 Hidden CRFs for object detection

 Latent structural SVMs 

 Markov logic networks with latent variables

 …



Other developments (cont’d)

Discriminative training of generative models

 Perceptron algorithm for HMMs

 Max-margin learning for HMMs

 Latent maximum entropy discrimination (MED)

 MED Markov Networks

 Nonparametric latent max-margin models 
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