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Supervised learning

# Given a set of I.1.D. training samples » = {(x",y")}X,
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# Learn a prediction function
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Supervised learning (cont’d)

# Many different choices

Logistic Regression

Maximum hkehhood estimation

max L(D; w) Zlogpybc

) — exp{WTf(X: y)}
plylx) = Zy’ exp{WTf(X:y’)}

Support Vector Machines (SVM)

Max-margin learning
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Real problems usually come with structures
# OCR —sequence

@ ? ? ? @ Input Structures

Output Structure

# Image annotation — regular/ irregular 2D layout
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& Much richer structures are not uncommon. ..




Structured learning

# A suit of learning methods and theory to consider structured
inputs and/or structured outputs and or structured model s

# Learning with structured outputs come with various names
o Structured output learning
a Structured prediction
a Collective prediction/ classification
o Relational learning

a ...

# We don’t discuss model structures

a Sparsity, structured sparsity, hierarchical models, etc.
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Structured Inputs

4 Naive Bayes (generative models)

o Strict conditional independence assumption on inputs

d
p(x1,. .. zaly) = | [ p(zily) T4
1=1

# Tree-augmented NB (generative models)

o Introduce sparse edges between input variables

d
p(x1,. .. zaly) = p(xaly) | [ p(@ileio1,y)
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# Logistic regression (conditional / discriminative
models)
a Allow arbitrary structures in inputs
exp{w ' f(x,
Pk =5 ey
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Discriminative SVM deals with rich input structures using kernels
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Structured outputs

# We consider sequential labeling

o Application in computational linguistics & computer science
Text and speech processing, including topic segmentation, part-of-speech (POS) tagging
Information extraction
Syntactic disambiguation

o Application in computational biology

DNA and protein sequence alignment
Sequence homolog searching in databases
Protein secondary structure prediction

RNA secondary structure analysis

# ... but the ideas generalize to richer structures (difficulty lies

in inference)




Generative models
4+ Hidden Markov models (HMMs)

o Assign a joint probability to paired observation and label sequences
o The parameters typically trained to maximize the joint likelihood of train

examples
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o Inference is done with forward-backward message passing




Generative models (cont’d)

# Difficulties and disadvantages

o Need to enumerate all possible observation sequences

o Not practical to represent multiple interacting features or long-range
dependencies of the observations

o \ery strict independence assumptions on the observations




Conditional models

4 Conditional probability P(label sequence y | observation sequence Xx)
rather than joint probability P(y, x)

o Specify the probability of possible label sequences given an observation
sequence

4 Allow arbitrary, non-independent features on the observation sequence
X

# The probability of a transition between labels may depend on past and
future observations
o Relax strong independence assumptions in generative models




Maximum entropy Markov models
(MEMMs)

+ Given training set X with label sequence Y:
o Train a model 0 that maximizes p(Y]X, 0) o
o For a new data sequence x, the predicted label y maximizes p(y|x, 0)
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k weight feature

o Note: per-state/local normalization




MEMMs (cont’d)

 MEMMs have all the advantages of conditional models

¢ But, 1t’s subject to “label bias problem”

o Bias toward states with fewer outgoing transitions

o Due to per-state normalization:

all the mass that arrives at a state must be distributed among the possible successor
states (“conservation of score mass”)




Label bias problem

since p(2|1,z) =1 and p(5|4,x2) =1, Vz (per-state normalization)

p(1,2|r,%) = p(1|r)p(2[1,%) = p(1|r)
p(4,5|'l“, Z) :p(4|7“)p(5‘4, 7’) =P

® The probability doesn’t depend on the second observation
o If one path is slightly more often in training, it always wins in testing!

& Does HMM has the label bias problem?




Solve the label bias problem
# Change the state-transition structure of the model

o Not always practical to change the set of states

4 Start with a fully-connected model and let the training
procedure figure out a good structure

o Prelude the use of prior, which is very valuable (e.g. in information
extraction)




Conditional Random Fields (CRFs)

# CRFs have all the advantages of MEMMs without
label bias problem

o MEMM uses per-state exponential model for the conditional probabilities of
next states given the current state

o CRF has a single exponential model for the joint probability of the entire
sequence of labels given the observation sequence

4 Undirected graphs

¢ Allow some transitions “vote” more strongly than others
depending on the corresponding observations




Definition of CRFs

Definition. Let G = (V| F) be a graph such that
Y = (Y,)uev, so that Y is indexed by the vertices
of G. Then (X,Y) is a conditional random field in
case, when conditioned on X, the random variables Y,
obey the Markov property with respect to the graph:
(Y, | XYy, w#0v)=p(Y,| X, Yy, w~ v), where

w ~ v means that w and v are neighbors in G.

# A random field model conditioned on inputs

# Examples:




Conditional distribution

# If the graph G = (V, E) of Y Is a chain, the conditional
distribution over the label sequence y, given X Is:

pg<y|x>=$exp(z At eyt Y ukgk(v,yu,x)]
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- f.and g, are given and fixed. g, Is a Boolean vertex feature; f, Is a
Boolean edge feature

o K is the number of features

0 0=, A, A, 1y, 1), A and g, are parameters to be
estimated

a Y| 1s the set of components of y defined by edge e
a Y|, 1s the set of components of y defined by vertex v
o Z(x) Is a normalization over the data sequence X




Parameter estimation for CRFs

# Lafferty et al., presented iterative scaling algorithms

# Butit’s very inefficient

log p,(y1X)=> A feyl.X)+ > £49,(v,yl,,X)—-log Z(x)

ecEk veV k

# More efficient learning algorithms

o LBFGS with approximate Hessian

olog p,(y[x) _ 0
00 00

Z A f eyl x)+ Z ﬂkgk(V,Y|v!X)_logZ(X)j

depending on graph structures, log Z(x) and its derivative can be hard
o Other optimization algorithms apply

# Note: standard MCLE over-fits, 2-norm regularization saves!




e

Discriminative Learning
from unstructured to structured ...

Logistic Regression

* maximum hkehhood estimation

max L(D; w) Zlogjp y'|x")

W

B exp{WTf(X: y)}
plylx) = zy, exp{w ' f(x,y)}

Support Vector Machines (SVM)

max—margin learning
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— Conditional Random Fields: CRFs

maximum likelihood estimation

W — exp{WTf(Xa .Y)}
p(ylx) = >y exp{wTf(x,y’)}

—  Max-margin Markov Networks: M3Ns

rnax—rnargin learning
1 N
min - FC Y &
st v fuy) > AlL(y) - &, Vi,Vy ,

where w' Af;(y) denotes the margin and
Al;(y) is a loss function.
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Max-margin Markov Networks

# Generalize the ideas of max-margin classifiers to structured

output learning
# Like CRFs, it has a Markov graph structure
# But it doesn’t define a normalized conditional distribution

# Instead, it directly learns a prediction model by doing opt.
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Learning M3Ns
¢ Many algorithms

a Sequential minimal optimization (SMO)
a Stochastic sub-gradient descent

o Cutting-plane methods

o Bundle methods

D e o o

# Compare with SVM, the difficulty is on inference!




CRFs versus M3N

# Commons
a have a Markov network to encode output structures
o discriminative models dealing with arbitrary inputs
a the kernel trick applies

O can use various regularizors in learning

# Differences

o Log—loss versus structured hinge loss

a Probabilistic versus non-probabilistic (normalization matters!)




Empirical comparison

& Synthetic datasets with 30 relevant features + 70 irrelevant

features
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Other developments

4 Direct task-dependent loss minimization
0" = argmin E [L(y, Vo (X)]
0

# Problem:

o task loss is typically non-convex, no polynomial algorithms with
performance guarantees

o Convex surrogate (struct-SVM) is inconsistent
o CRF maximizes likelihood, not related to task loss.

# A perceptron-like learning rule is constructed, whose expected
update direction approaches the gradient of task loss

o Related to stochastic sub—gradient descent of struct-SVM.




Other developments (cont’d)

# Markov logic networks

o Use logic formula as dependence templates to construct a Markov
network

o Each formula is “softened” by associating with a Weight

o Generative or discriminative training

# Learning with structured latent variables
o Hidden CREFs for object detection
o Latent structural SVMs
o Markov logic networks with latent variables

a ...




Other developments (cont’d)

# Discriminative training of generative models
a Perceptron algorithm for HMMs
o Max-margin learning for HMMs
o Latent maximum entropy discrimination (MED)

o MED Markov Networks

o Nonparametric latent max-margin models
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